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Abstract. Nuclear matter equations of state based on Skyrme, Myers-Swiatecki and Tondeur interactions
are written as polynomials of the cubic root of density, with coefficients that are functions of the relative
neutron excess δ. In the extrapolation toward states far away from the standard one, it is shown that
the asymmetry dependence of the critical point (ρc, δc) depends on the model used. However, when the
equations of state are fitted to the same standard state, the value of δc is almost the same in Skyrme
and in Myers-Swiatecki interactions, while is much lower in Tondeur interaction. Furthermore, δc does not
depend sensitively on the choice of the parameter γ in Skyrme interaction.

PACS. 21.65.+f Nuclear matter – 21.30.Fe Forces in hadronic systems and effective interactions

1 Introduction

Nuclear matter is considered as an uncharged nucleon sys-
tem distributed uniformly in the space, and nuclear mat-
ter equation of state is the energy per nucleon e(ρ, δ) of
nuclear matter given as function of nucleon density ρ and
relative neutron excess δ. The equation of state e(ρ, δ) is a
fundamental quantity in theories of neutron stars and su-
pernova explosions, as well as in studies of nucleus-nucleus
collisions at energies where nuclear compressibility comes
into play [1].

The main measured quantities which can provide in-
formation about equation of state (EOS) are the binding
energies and other data of finite nuclei. As the finite nuclei
are in states near the standard nuclear matter state, which
is the ground state of nuclear matter with normal nucleon
density ρ0 and zero neutron excess, δ = 0, therefore, our
knowledge about EOS can be confirmed experimentally
only in a small region around ρ ∼ ρ0 and δ ∼ 0. In this
region, the main quantities which specify the EOS are the
coefficients a1 (volume energy), J (symmetry energy), K0

(incompressibility), L (density symmetry), and Ks (sym-
metry incompressibility). Nowadays the quantities which
are known with enough precision are a1, J and K0, while
the last two are still under investigation.

However, there is currently considerable interest in the
very neutron-rich nuclei and the energetic heavy-ion colli-
sions where the nuclear matter state is beyond this region.
As any direct information beyond this region is difficult
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to come by, extrapolation is inescapable and, in this case,
a nuclear model is required. This model is fitted to bind-
ing energies and other data of finite nuclei at first, then
applied to nuclear matter to derive the EOS. In this way,
the obtained EOS can be considered as being fitted indi-
rectly to a region around the standard state, but its pre-
diction on states beyond this region should be regarded
as an extrapolation. Obviously, the reliability of this ex-
trapolation depends on the foundation of the model. In
order to be reliable, the model should be based on a well-
founded theory with as few adjustable parameters as pos-
sible, which are fitted to as many high-accuracy measured
data as possible. Basically, this is what we understand by
model of effective nucleon-nucleon interaction, for example
the Skyrme [2], the Myers-Swiatecki [3] and the Tondeur
interactions [4]. The EOSs derived from these effective in-
teractions have analytical expressions which can be pic-
tured and calculated easily, so they are used widely in the
literature, even they are based on energy functional theo-
ries which are in the macroscopic level. Instead of effective
nucleon-nucleon interaction, nuclear matter is studied also
in more basic level by “microscopic” potentials available
in the market and by sophisticated many-body theories
for many years [5–9].

The purpose of the present paper is to discuss the
EOSs given by Skyrme [2], Myers-Swiatecki [3] and Ton-
deur interactions [4], in comparison with the microscopic
calculations. In section 2, the nuclear EOS given by these
interactions is presented. The equilibrium condition and
the properties of standard nuclear matter are discussed
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in section 3, while the predictions for nuclear matter
away from the standard state are given in section 4. Sec-
tion 5 makes comparison with some microscopic calcula-
tions. In section 6 a short discussion and summary are
addressed. Appendix A presents a specific discussion on
Myers-Swiatecki interaction and Appendix B gives some
formulas used in section 4 to calculate the interaction pa-
rameters from standard nuclear matter quantities.

2 Nuclear equation of state

The nuclear energy EN of a nucleus can be written as

EN =
∫

d3rEN, (1)

where the nuclear energy density functional EN can be
written with enough generality as

EN = ρ(r)e(ρ, δ) + EGD, (2)

where

EGD =
1
2
Q1(∇ρ)2 + Q2

[
(∇ρn)2 + (∇ρp)2

]
(3)

is the gradient-density–dependent term. In the above
equation, ρ = ρn + ρp, ρn and ρp are the neutron and
proton densities, respectively,

δ =
ρn − ρp

ρ
(4)

the relative neutron excess, Q1 and Q2 the model param-
eters related to the finite size and the surface effects of
nuclei.

The EOS e(ρ, δ) depends on the model of interaction,
while the functional EGD depends also on the model of
nuclei. Equation (3) is exact for Skyrme and Tondeur in-
teractions, and is approximate for Myers-Swiatecki inter-
action (see Appendix A). However, the functional EGD is
irrelevant to the present discussion, since it is irrelevant
to the nuclear matter property. In the following the EOS’s
based on Skyrme, Myers-Swiatecki and Tondeur interac-
tions will be given.

2.1 Skyrme interaction

The EOS based on Skyrme interaction can be written as

eSk(ρ, δ) = T
[
DSk

2 (δ)
(ρ

ρ 0

)2/3

− DSk
3 (δ)

(ρ

ρ 0

)3/3

+DSk
5 (δ)

(ρ

ρ 0

)5/3

+ DSk
γ (δ)

(ρ

ρ 0

)γ/3]
, (5)

where ρ0 = 3/4πr3
0, r0 the nuclear radius constant, T an

appropriate constant with dimension of energy such that

the D coefficients are dimensionless, and γ a model pa-
rameter. It is convenient to choose T as the Fermi energy
of standard nuclear matter,

T =
h̄2

2m

(3π2

2
ρ0

)2/3

, (6)

where m is the nucleon mass. The D coefficients are

DSk
2 (δ) =

3
10

[
(1 + δ)5/3 + (1 − δ)5/3

]
, (7)

DSk
3 (δ) = −3

8
ρ0

T
t0

[
1− 2

3

(
x0 +

1
2

)
δ2

]
, (8)

DSk
5 (δ) =

3
10

(3π2

2

)2/3 ρ
5/3
0

T

{
s1

[
(1 + δ)5/3

+(1−δ)5/3
]
+

1
2
s2

[
(1+δ)8/3+(1−δ)8/3

]}
, (9)

DSk
γ (δ) =

1
16

ρ
γ/3
0

T
t3

[
1 − 2

3

(
x3 +

1
2

)
δ2

]
, (10)

where

s1 =
1
4

[
t1

(
1 +

x1

2

)
+ t2

(
1 +

x2

2

)]
,

s2 =
1
4

[
t2

(
x2 +

1
2

)
− t1

(
x1 +

1
2

)]
, (11)

and t0, t1, t2, t3, x0, x1, x2, x3, γ are the interaction pa-
rameters. It is worthwhile to note that, among these inter-
action parameters, only t0, t3, x0, x3, s1, s2, and γ appear
in the EOS and thus are relevant to the nuclear matter
properties. Beside these interaction parameters, there is
another interaction parameter W0 [2] that appears only
in the coefficients Q1 and Q2 and thus is irrelevant to the
EOS.

2.2 Myers-Swiatecki interaction

The EOS based on Myers-Swiatecki interaction can be
written as [10,11]

eMS(ρ, δ) = T
[
DMS

2 (δ)
(ρ

ρ 0

)2/3

−DMS
3 (δ)

(ρ

ρ 0

)3/3

+ DMS
5 (δ)

(ρ

ρ 0

)5/3]
, (12)

where

DMS
2 (δ) =

3
10

(1 − γl)
[
(1 + δ)5/3 + (1 − δ)5/3

]

− 3
20

γu ×
{

5(1+δ)2/3(1−δ)−(1−δ)5/3, for δ ≥ 0,
5(1+δ)(1−δ)2/3−(1+δ)5/3, for δ ≤ 0,

(13)

DMS
3 (δ) =

1
2
α(1 − ξδ2), (14)
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DMS
5 (δ) =

3
10

{
Bl

[
(1 + δ)8/3 + (1 − δ)8/3

]

+Bu(1 − δ2)
[
(1 + δ)2/3 + (1 − δ)2/3

]}
. (15)

In the above equations, α, Bl, Bu, γl, γu, and ξ are the
interaction parameters. In addition to these parameters,
there is another one a [3], the Yukawa range of force, that
is irrelevant to the EOS, as it appears only in the coeffi-
cients Q1 and Q2.

2.3 Tondeur interaction

The EOS based on Tondeur interaction can be written as

eTo(ρ, δ) = T
[
DTo

2 (δ)
(ρ

ρ 0

)2/3

−DTo
3 (δ)

(ρ

ρ 0

)3/3

+ DTo
γ (δ)

(ρ

ρ 0

)γ/3]
, (16)

where

DTo
2 (δ) =

3
10

[
(1 + δ)5/3 + (1 − δ)5/3

]
+

ρ
2/3
0 c

T
δ2, (17)

DTo
3 (δ) = −ρ0a

T
, (18)

DTo
γ (δ) =

ρ
γ/3
0 b

T
. (19)

In the above equations, a, b, c, and γ are the interaction
parameters. In addition, there are another two interaction
parameters d and η [4], that are irrelevant to the present
discussion as they appear only in Q1 and Q2.

3 Standard nuclear matter

The EOS given in the last section can be written generally
as

e(ρ, δ) = T
[
D2(δ)

(ρ

ρ 0

)2/3

− D3(δ)
(ρ

ρ 0

)3/3

+D5(δ)
(ρ

ρ 0

)5/3

+ Dγ(δ)
(ρ

ρ 0

)γ/3]
. (20)

The equilibrium condition ∂e/∂ρ|0 = 0, by which the stan-
dard state ρ = ρ0 at δ = 0 is defined, gives the following
relationship among D2(0), D3(0), D5(0), Dγ(0) and γ:

2D2(0) − 3D3(0) + 5D5(0) + γDγ(0) = 0. (21)

The 5 quantities of nuclear matter a1, K0, J , L, and Ks

can be expressed as

a1 = −e(ρ0, 0) = −T

3
[
D20 − 2D50 − (γ − 3)Dγ0

]
, (22)

K0 = 9ρ2
0

∂2e

∂ρ2

∣∣∣
0
= T

[−2D20+10D50+γ(γ−3)Dγ0

]
,

(23)

J =
1
2

∂2e

∂δ2

∣∣∣
0
= T

[
D22 − D32 + D52 + Dγ2

]
, (24)

L =
3
2
ρ0

∂3e

∂ρ∂δ2

∣∣∣
0
= T

[
2D22 − 3D32 + 5D52 + γDγ2

]
,

(25)

Ks =
9
2
ρ2
0

∂4e

∂ρ2∂δ2

∣∣∣
0
= T

[−2D22+10D52+γ(γ−3)Dγ2

]
,

(26)

where

Di0 = Di(0), Di2 =
1
2

∂2Di

∂δ2
|0, i = 2, 3, 5, γ. (27)

Relation (21) is used in obtaining eqs. (22) and (23), from
which the following formulas can be derived:

K0 = 15a1 + [3D20 + (γ − 5)(γ − 3)Dγ0]T, (28)

K0 = 3γa1 + [(γ − 2)D20 − 2(γ − 5)D50]T. (29)

The specific discussion for Skyrme, Myers-Swiatecki
and Tondeur interactions will be given in the following.

3.1 Skyrme interaction

For Skyrme interaction, the following relationship can be
obtained from eq. (21):

9
8

ρ0t0
T

+
γ

16
ρ

γ/3
0 t3
T

+ 3
(3π2

2

)2/3 ρ
5/3
0

T

(
s1+

1
2
s2

)
+

6
5

= 0.

(30)

Therefore, among 7 parameters t0, t3, x0, x3, s1, s2, and
γ, only 6 of them are free. Considering this relation, it
can be shown that a1, K0, J , L and Ks are independent
of each other, in the Skyrme EOS.

A relation connecting t3 to a1 and K0 can be obtained
from eq. (28),

K0 = 15a1 +
9
5
T +

(γ − 5)(γ − 3)
16

ρ
γ/3
0 t3. (31)

If t3 = 0, as a1 ∼ 16MeV and T ∼ 37MeV are well-
known from measurements, this formula gives the estima-
tion K0 ∼ 306MeV. Therefore, in order to have a K0

value lower than 306MeV, the fourth term (ρ/ρ0)γ/3 in
the Skyrme EOS is needed.
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3.2 Myers-Swiatecki interaction

For Myers-Swiatecki interaction, DMS
γ (δ) = 0, all the γ-

dependent terms in eqs. (21)-(26) do not appear. The equi-
librium condition (21) can be transformed into the follow-
ing relation among α, B and γ:

5α − 10B − 4(1 − γ) = 0, (32)

where B and γ are defined, respectively, as

Bl,u =
1
2
(1∓ ζ)B, γl,u =

1
2
(1 ∓ ζ)γ. (33)

Therefore, there are only 4 independent interaction pa-
rameters in the Myers-Swiatecki EOS, α, B, ξ and ζ, if γ
is solved from eq. (32) as a function of α and B. Corre-
spondingly, there are only 4 independent variables among
a1, K0, J , L and Ks in the Myers-Swiatecki EOS. Actu-
ally, the following relationship can be derived:

Ks

T
=

4B(1 + γ)
4B + γ

[
1 − 10B + γ

2B(1 + γ)
3J − L

T

]
, (34)

where

B =
5
18

K0 − 6a1

T
, (35)

γ = 1− 5
9

K0 − 15a1

T
. (36)

Furthermore, formula (28) for the Myers-Swiatecki
EOS becomes

K0 = 15a1 +
9
5
(1 − γ)T. (37)

For γ = 0, Myers-Swiatecki interaction is reduced to
Seyler-Blanchard interaction [12] and this formula gives
the estimation K0 ∼ 306MeV, the same as that dis-
cussed for Skyrme interaction. Hence, γ-dependent terms
in Myers-Swiatecki EOS are required, in order to obtain
K0 lower than 306MeV [10].

3.3 Tondeur interaction

For Tondeur interaction, D5(δ) = 0, the term involving
D5(0) in eq. (21) as well as all the terms involving D50

and D52 in eqs. (22)-(26) do not appear. The equilibrium
condition (21) now is a relation among a, b and γ:

3ρ0a

T
+

γρ
γ/3
0 b

T
+

6
5

= 0. (38)

In this case, there are only 3 independent interaction pa-
rameters in Tondeur EOS, for example a, c and γ. Corre-
spondingly, there are only 3 free variables in a1, K0, J , L
and Ks, for example a1, K0 and J , since it can be shown
that

L = 2J, Ks = −2J. (39)

In addition, the following relationship among K0, a1

and γ can be written for Tondeur EOS from eq. (29):

K0 = 3γa1 +
3
5
(γ − 2)T. (40)

From a1 ∼ 16MeV, T ∼ 37MeV and K0 ∼ 220MeV, it
can be evaluated that the appropriate integer is γ = 4, as
given by Tondeur [4]. In this case, i.e., if γ = 4 is cho-
sen, there are only two interaction parameters to be freely
adjusted in the data fit, for example a and c. Correspond-
ingly, there are only two independent variables in a1, K0,
J , L and Ks, for example a1 and J , when K0 is calculated
by eq. (40). From a1 ∼ 16MeV, T ∼ 37MeV and γ = 4
we can evaluate K0 ∼ 236MeV. It is worthwhile to note
that the value given by Tondeur is K0 = 235.8MeV [4].

The equilibrium condition is checked by calculating the
expression on the left-hand side of eq. (21) for Skyrme,
Myers-Swiatecki and Tondeur interactions, using the in-
teraction parameters and the nuclear radius constant r0

given in refs. [2], [3], and [4], respectively. These
parameters will be referred to as the original interac-
tion parameters thereafter. Besides, the following phys-
ical constants [13] are used in the present calculation:
h̄c = 197.32891MeV · fm, m = 938.90595MeV/c2.

The calculated values are given as EC in the second
column of table 1. It shows that the equilibrium condition
of standard nuclear matter is fulfilled in the data fit to de-
termine the original parameters of Skyrme (1st-5th row),
Myers-Swiatecki (6th row), and Tondeur interactions (7th
row), respectively.

The standard nuclear matter properties a1, K0, J , L,
and Ks, calculated from Skyrme (1st-5th row), Myers-
Swiatecki (6th row), and Tondeur interactions (7th row),
respectively, are also given in the 5th-9th column of table
1, all in MeV. In this table, γ is a model parameter in
eqs. (5) and (16) for Skyrme and Tondeur interactions,
respectively, r0 the nuclear radius constant used in the
respective interaction, in fm.

As a comparison, the last two rows of table 1 (labeled
by CWS) present the result obtained by fitting a1, K0,
J , L, and Ks directly to nuclear masses [14]. It can be
seen that these quantities have values close each other,
except the case SIII, where the value of K0 and Ks is far
away from others. The average over the 2nd to 7th row
gives a1 = 15.97MeV, K0 = 234.4MeV, J = 29.25MeV,
L = 48.63MeV, and Ks = −126.9MeV.

4 Nuclear matter away from the standard
state

The nuclear matter state with zero pressure and minimum
energy per nucleon can be solved from the following equa-
tion:

∂e

∂ρ
= 0 . (41)

Usually there are several solutions, we should choose that
one has minimum energy per nucleon. This solution gives
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Table 1. The coefficients of volume energy a1, symmetry energyJ , incompressibility K0, density symmetry L and symmetry
incompressibility Ks calculated from the various Skyrme interactions [2](1st to 5th row), Myers-Swiatecki interaction [3](6th
row), and Tondeur interaction [4](7th row), by original parameters, all in MeV. γ is a model parameter in eqs. (5) and (16) for
Skyrme and Tondeur interactions, respectively. EC is the equilibrium criterion calculated from the left-hand side of eq. (21).
As a comparison, the last two rows (labeled by CWS) present the result obtained by fitting these quantities directly to nuclear
masses [14]. r0 is the nuclear radius constant in fm.

EOS EC r0 γ a1 K0 J L Ks

SIII 0.00080 1.180 6 15.86 355.5 28.16 9.88 −393.9
Ska −0.00001 1.154 4 15.99 263.1 32.91 74.62 −78.45
SkM 0.00004 1.142 7/2 15.77 216.6 30.75 49.34 −148.8
SkM∗ 0.00004 1.142 7/2 15.77 216.6 30.03 45.78 −155.9
RATP 0.00049 1.143 18/5 16.05 239.6 29.26 32.39 −191.3
M-S 0.00001 1.140 16.24 234.4 32.65 49.88 −147.1
Tondeur 0.00043 1.145 4 15.98 235.8 19.89 39.78 −39.78
CWS 0.00000 1.140 4 15.98 217.5 28.50 64.32 −101.3
CWS 0.00000 1.140 5 16.10 237.9 28.50 63.93 −114.2

density as function of δ:

ρm = ρm(δ). (42)

For δ = 0, eq. (41) is reduced to the equilibrium condition
of standard nuclear matter, we have

ρm(0) = ρ0. (43)

The incompressibility of non-equilibrium nuclear mat-
ter, which is of interest in many applications, can be de-
fined as [11]

K(ρ, δ) = 9
∂P

∂ρ
, (44)

where P = ρ2∂e/∂ρ is the pressure. Along the line of
minimum (42), this K(ρ, δ) becomes

Km(δ) = 9
[
ρ2 ∂2e

∂ρ2

]
ρ=ρm

. (45)

At the standard state (ρ0, 0) we have Km(0) = K0. At the
critical point (ρc, δc), where the maximum and the mini-
mum are coincident, the curvature of e(ρ, δc) vs. ρ changes
sign and Km(δc) = 0. So Km(δ) starts with K0 and ends
at 0 when δ increases along the line of minimum. In addi-
tion, the generalized symmetry energy of non-equilibrium
nuclear matter can be defined as [6] [1] [9]

J(ρ) =
1
2

∂2e

∂δ2

∣∣∣
δ=0

. (46)

In term of this quantity, the usual symmetry energy J can
be expressed as

J = J(ρ0). (47)

For nuclear matter not far away from the standard
state (ρ0, 0), the EOS can be written approximately
as [14]

e(ρ, δ) ≈ −a1 +
1
18

(
K0 + Ksδ

2
)(ρ − ρ0

ρ0

)2

+
[
J +

L

3

(ρ − ρ0

ρ0

)]
δ2. (48)

In this approximation, we have

K(ρ, δ) ≈ (K0 + Ksδ
2)

( ρ

ρ0

)2

, (49)

J(ρ) ≈ J +
L

3
ρ − ρ0

ρ0
+

Ks

18

(ρ − ρ0

ρ0

)2

. (50)

Using eq. (48), the following solutions can be obtained:

ρm ≈ ρ0

(
1− 3L

K0
δ2

)
, (51)

em ≈ −a1 + Jδ2, (52)

Km ≈ K0 + Ksδ
2, (53)

where only the linear term in δ2 is kept. The systematics
of nuclear central densities [15] based on elastic electron
scattering data [17,18] and muonic atom spectroscopy
data [18] provide a direct evidence for eq. (51).

Thus, in the plot e(ρ, δ) vs. ρ, we have the geometric
meaning of a1, K0, J , L, and Ks: the standard state is at
the minimum point ρm = ρ0 with depth a1 and curvature
proportional to K0; when the minimum is moved with
increasing δ from 0, the decrease of ρm is controlled by
3L/K0, the increase of depth is controlled by J , while
the decrease of curvature is controlled by −Ks. Therefore,
the quantities a1, K0, J , L, and Ks are characteristics of
nuclear matter not only at standard state but also at the
state not far away from the standard one. In this way,
the interaction with different value of these quantities will
predict different properties of nuclear matter that are not
far away from the standard state.

The exact solution ρm(δ) depends on the interaction.
The analytic solution is possible for SIII, Ska, Myers-
Swiatecki, and Tondeur interactions, while the numerical
solution is appropriate for SkM, SkM*, and RAPTP in-
teractions.
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Table 2. Input values used to readjust the interaction param-
eters, r0 in fm, others in MeV.

Force r0 a1 K0 J L Ks

Skyrme 1.140 15.97 236.07 29.25 58.50 −67.92
M-S 1.140 15.97 236.07 29.25 58.50 −67.92
Tondeur 1.140 15.97 236.07 29.25 58.50 −58.50

For Myers-Swiatecki interaction, (41) is a cubic equa-
tion which gives

(ρm

ρ0

)1/3

= 2s0 sin
(π

6
+

θ

3

)
, (54)

where

s0 =
[1
5

D3(δ)
D5(δ)

]1/2

, cos θ =
1

5s3
0

D2(δ)
D5(δ)

. (55)

The superscript MS for Myers-Swiatecki’s D is dropped
for simplicity. The critical δc, where the maximum and the
minimum is coincident, is determined by

D2(δc) = 5s3
0D5(δc), (56)

which corresponds to θ = 0 and

ρc = ρm(δc) = s3
0ρ0. (57)

For Tondeur interaction with γ = 4, (41) is a quadratic
equation which gives

(ρm

ρ0

)1/3

=
1

8D4

{
3D3 + [9D2

3 − 32D4D2(δ)]1/2
}
, (58)

where D3 and D4 are numbers, the superscript To for
Tondeur’s D is dropped also. The critical point is given
by

9D2
3 − 32D4D2(δc) = 0 ,

ρc =
(3D3

8D4

)3

ρ0 = −
(3a
8b

)3

. (59)

As the location ρ0 and depth a1 are different for dif-
ferent equation of state, as shown in table 1, a way to
make comparison is to plot the normalized energy per nu-
cleon e/a1 as a function of the relative nucleon density
ρ/ρ0 for given δ. Figure 1a shows this e/a1 vs. ρ/ρ0 for
δ = 0, calculated by the various Skyrme interactions (solid
lines), Myers-Swiatecki interaction (dot-dashed line), and
Tondeur interaction (dashed line). The solid lines in the
right-hand side of the plot, from top to bottom, corre-
spond to SIII, Ska, RATP, SkM, and SkM* interactions,
respectively. The difference between SkM and SkM* is
negligible and Myers-Swiatecki is almost coincident with
RATP. This sequence is just the decreasing sequence of
K0’s value, as shown in table 1: the smaller value of K0,
the smaller curvature of the curve at the standard state,
thus the softer the EOS.

A natural question is: what is the difference among
these EOS’s, if the standard state is the same with same
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Fig. 1. (a) Normalized energy per nucleon e/a1 vs. relative
nucleon density ρ/ρ0 calculated by original interaction param-
eters at δ = 0, (b) e vs. ρ/ρ0 calculated by readjusted in-
teraction parameters at δ = 0 of the various Skyrme inter-
actions (solid lines), Myers-Swiatecki interaction (dot-dashed
line), and Tondeur interaction (dashed line). The solid lines
in the right-hand side of the plot in (a) from top to bottom
correspond to SIII, Ska, RATP, SkM, and SkM* interactions,
respectively. The difference between SkM and SkM* is negligi-
ble and Myers-Swiatecki is almost coincident with RATP.

location ρ0, depth a1, curvature ∼ K0 and so on? In or-
der to make this comparison, the interaction parameters
should be readjusted according to chosen ρ0, a1, K0 and
so on. For the value of ρ0, we choose r0 = 1.140 fm which is
well determined by the data fit to nuclear charge radii [19]
extracted from elastic electron scattering data [17]. In ad-
dition, we can choose the value of a1, K0, J , L, and Ks

in an appropriate way. In this case, eq. (34) should be
fulfilled for Myers-Swiatecki interaction, while eqs. (39)
and (40) should be fulfilled for Tondeur interaction. The
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Fig. 2. (a) Normalized nuclear incompressibility K/K0 vs. rel-
ative nucleon density ρ/ρ0 calculated by original interaction
parameters at δ = 0, (b) K vs. ρ/ρ0 calculated by readjusted
interaction parameters at δ = 0 of the various Skyrme inter-
actions (solid lines), Myers-Swiatecki interaction (dot-dashed
line), and Tondeur interaction (dashed line). On the right-hand
side of the plot in (a) the solid lines from top to bottom corre-
spond to SIII, Ska, RATP, SkM, and SkM* interactions, respec-
tively. The difference between SkM and SkM* is negligible. In
(b), the solid lines from top to bottom are due to SkM, SkM*,
RATP, Ska, and SIII, where SkM* is identical to SkM. Tondeur
is coincident with Ska; SkM and RATP almost overlap.

chosen values used to calculate the interaction parameters
are listed in table 2, while the formulas used to perform
this calculation are given in Appendix B. Among these
values, a1 and J are the average values given in the last
section, K0 and L are calculated by eqs. (40) and (39).
Ks is calculated by eq. (39) in Tondeur’s case while by
eq. (34) in Myers-Swiatecki’s case. In Skyrme’s case, Ks

can be chosen from either Myers-Swiatecki’s or Tondeur’s
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Fig. 3. (a) Normalized symmetry energy J(ρ)/J vs. the rel-
ative nucleon density ρ/ρ0 calculated by original interaction
parameters, (b) J(ρ) vs. ρ/ρ0 calculated by readjusted interac-
tion parameters of the various Skyrme interactions (solid lines),
Myers-Swiatecki interaction (dot-dashed line), and Tondeur in-
teraction (dashed line). On the right-hand side of the plot, in
(a), the solid lines, from top to bottom, correspond to Ska,
SkM, SkM*, RATP, and SIII interactions, respectively. The
difference between SkM and SkM* for ρ/ρ0 < 1.3 is negligible.
In addition, Myers-swiatecki’s interaction is almost coincident
with SkM’s. In (b), the difference among these curves is negli-
gible.

value, there is no significant difference in the calculated
result which will be shown in the following.

The calculated Skyrme interaction parameters are
given in table 3. The Myers-Swiatecki interaction param-
eters are calculated as

α = 2.06285, B = 1.05232, γ = 1.05222 ,

ξ = 0.12333, ζ = 0.37363. (60)
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Table 3. Readjusted Skyrme interaction parameters t0, t3, x0, s1, and s2. Input values are r0 = 1.140 fm, a1 = 15.97MeV,
K0 = 236.07MeV, J = 29.25MeV, L = 58.50MeV, and Ks = −67.92MeV.

Force SIII Ska SkM SkM∗ RATP
γ 6 4 7/2 7/2 18/5
t0(MeV fm3) −1405.521 −1792.320 −2372.518 −2372.518 −2179.119
t3(MeV fmγ) −14402.55 12794.56 12584.33 12584.33 11940.95
x0 0.06956 0.13735 0.19759 0.19759 0.18018
x3 0.38368 0.38368 0.38368 0.38368 0.38368
s1(MeV fm5) 642.825 −42.389 71.813 71.813 55.499
s2(MeV fm5) −473.186 84.802 −8.196 −8.196 5.090

Table 4. Critical point (ρc, δc) predicted by Skyrme, Myers-Swiatecki, and Tondeur interactions, respectively. r0 in fm, ρc in
fm−3, and ec in MeV. For each item, the first line is given by original interaction parameters, the second line by readjusted
parameters shown in table 3 for Skyrme interactions while by eqs. (60) and (61) for Myers-Swiatecki and Tondeur interactions,
respectively.

SIII Ska SkM SkM∗ RATP M-S Tondeur
r0 1.180 1.154 1.142 1.142 1.143 1.140 1.145

1.140 1.140 1.140 1.140 1.140 1.140 1.140
δc 0.8385 0.8647 0.8390 0.8421 0.8303 0.8213 0.8732

0.8772 0.8980 0.8908 0.8908 0.8920 0.8988 0.7697
ρc 0.07173 0.02416 0.02345 0.02420 0.03892 0.03039 0.03081

0.02732 0.02969 0.02825 0.02825 0.02851 0.02643 0.03131
ec 3.9019 1.5852 1.2572 1.2814 1.9898 1.1031 2.6142

1.8894 1.8505 1.7025 1.7025 1.7311 1.1280 2.6304

For γ = 4, Tondeur interaction parameters are calculated
as

a = −672.13MeV fm3, b = 799.71MeV fm4 ,

c = 99.116MeV fm2. (61)

These parameters will be referred to as the readjusted
interaction parameters thereafter.

As a comparison with the result calculated by original
interaction parameters, fig. 1b plots e vs. ρ/ρ0 for δ = 0,
calculated by readjusted interaction parameters. It can be
seen that now there is almost no difference among these
EOS’s for 0.4 < ρ/ρ0 < 1.6.

Figure 2 displays in (a) the normalized nuclear incom-
pressibility K/K0 vs. the relative nucleon density ρ/ρ0 cal-
culated by original interaction parameters at δ = 0, and
in (b) K vs. ρ/ρ0 calculated by readjusted interaction pa-
rameters at δ = 0 of the various Skyrme interactions (solid
lines), Myers-Swiatecki interaction (dot-dashed line), and
Tondeur interaction (dashed line). Considering the right-
hand side of the plot, in (a), the solid lines, from top to
bottom, correspond to SIII, Ska, RATP, SkM, and SkM*
interactions, respectively. The difference between SkM and
SkM* is negligible. In (b), the solid lines, from top to bot-
tom, are due to SkM, SkM*, RATP, Ska, and SIII, where
SkM* is identical to SkM. Tondeur is coincident with Ska;
SkM and RATP almost overlap. It can be seen from this
figure that the difference among these curves is negligible
for ρ/ρ0 < 1.2. This is expected from eq. (49) which shows
that the curve is determined essentially by K0.

Figure 3 depicts in (a) the normalized symmetry en-
ergy J(ρ)/J vs. the relative nucleon density ρ/ρ0 cal-
culated by original interaction parameters, in (b) J(ρ)

vs. ρ/ρ0 calculated by readjusted interaction parameters
of the various Skyrme interactions (solid lines), Myers-
Swiatecki interaction (dot-dashed line), and Tondeur in-
teraction (dashed line). Considering the right-hand side
of the plot, in (a), the solid lines, from top to bottom,
correspond to Ska, SkM, SkM*, RATP, and SIII interac-
tions respectively. The difference between SkM and SkM*
for ρ/ρ0 < 1.3 is negligible. In addition, Myers-Swiatecki’s
interaction is almost coincident with SkM’s. In (b), the dif-
ference among these curves is negligible. This is expected
from eq. (50), which shows that, for the density ρ is not
far away from ρ0, the symmetry energy J(ρ) is determined
essentially by J , L and Ks, and these quantities (J and L)
are the same or almost the same (Ks) for the readjusted
interaction parameters.

Using the interaction parameters, we can calculate
ρm(δ), em(δ), and Km(δ) along the equilibrium line. The
result is shown in figs. 4-6, while the critical point value
(ρc, δc) is listed in table 4, for Skyrme, Myers-Swiatecki,
and Tondeur interactions, respectively.

Figure 4 shows the equilibrium density ρm as function
of the relative neutron excess δ, calculated by (a) original
parameters and (b) readjusted parameters of the various
Skyrme interactions (solid lines), Myers-Swiatecki inter-
action (dot-dashed line), and Tondeur interaction (dashed
line). The solid lines, in the middle range of δ, from top
to bottom, in (a), correspond to SIII, RATP, SkM, SkM*,
and Ska interactions respectively, the difference between
SkM and SkM* is very small. In (b), the solid lines from
top to bottom correspond to Ska, RATP, SkM, SkM*,
and SIII interactions, respectively. SkM and SkM* are the
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Fig. 4. Equilibrium density ρm as function of the relative neu-
tron excess δ, calculated by (a) original parameters and (b)
readjusted parameters of the various Skyrme interactions (solid
lines), Myers-Swiatecki interaction (dot-dashed line), and Ton-
deur interaction (dashed line). The solid lines, in the middle
range of δ from top to bottom in (a) correspond to SIII, RATP,
SkM, SkM*, and Ska interactions, respectively, the difference
between SkM and SkM* is very small. In (b) the solid lines from
top to bottom correspond to Ska, RATP, SkM, SkM*, and SIII
interactions, respectively. SkM and SkM* are the same whereas
RATP, SkM and Myers-Swiatecki almost overlap.

same whereas RATP, SkM and Myers-Swiatecki almost
overlap.

Figure 5 gives the equilibrium energy per nucleon em

as function of the relative neutron excess δ, calculated
by (a) original parameters and (b) readjusted parameters
of the various Skyrme interactions (solid lines), Myers-
Swiatecki interaction (dot-dashed line), and Tondeur in-
teraction (dashed line). The solid lines, on the right-hand
side, in (a), correspond to RATP, SkM, SkM*, SIII, and
Ska interactions, from top to bottom, respectively. SIII,
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Fig. 5. Equilibrium energy per nucleon em as function of the
relative neutron excess δ, calculated by (a) original parameters
and (b) readjusted parameters of the various Skyrme inter-
actions (solid lines), Myers-Swiatecki interaction (dot-dashed
line), and Tondeur interaction (dashed line). The solid lines, on
the right-hand side, in (a) correspond to RATP, SkM, SkM*,
SIII, and Ska interactions from top to bottom, respectively.
SIII, Ska and Tondeur almost overlap, whereas the difference
between SkM and SkM* is negligible. In (b) the solid lines from
top to bottom correspond to SIII, SkM, SkM*, RATP, and Ska
interactions, respectively, where SkM and SkM* are the same.
SkM, RATP and Ska are almost coincident.

Ska and Tondeur almost overlap, whereas the difference
between SkM and SkM* is negligible. In (b), the solid
lines from top to bottom correspond to SIII, SkM, SkM*,
RATP, and Ska interactions, respectively, where SkM and
SkM* are the same. SkM, RATP and Ska are almost co-
incident.

Figure 6 plots the equilibrium incompressibility Km

as function of the relative neutron excess δ, calculated
by (a) original parameters and (b) readjusted parameters
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Fig. 6. Equilibrium incompressibility Km as function of the
relative neutron excess δ, calculated by (a) original parameters
and (b) readjusted parameters of the various Skyrme inter-
actions (solid lines), Myers-Swiatecki interaction (dot-dashed
line), and Tondeur interaction (dashed line). The solid lines in
(a) correspond to SIII, RATP, Ska, SkM*, and SkM interac-
tions from top to bottom in the middle range of δ, respectively.
Ska, SkM* and SkM almost overlap. In (b) the solid lines from
top to bottom correspond to Ska, RATP, SkM, SkM*, and SIII
interactions, respectively; SkM and SkM* are the same.

of the various Skyrme interactions (solid lines), Myers-
Swiatecki interaction (dot-dashed line), and Tondeur in-
teraction (dashed line). The solid lines in (a) correspond to
SIII, RATP, Ska, SkM*, and SkM interactions, from top to
bottom in the middle range of δ, respectively. Ska, SkM*
and SkM almost overlap. In (b), the solid lines, from top to
bottom, correspond to Ska, RATP, SkM, SkM*, and SIII
interactions, respectively; SkM and SkM* are the same.
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Fig. 7. Neutron matter EOS e(ρ, 1) vs. nucleon density ρ, cal-
culated by (a) original parameters and (b) readjusted param-
eters of the various Skyrme interactions (solid lines), Myers-
Swiatecki interaction (dot-dashed line), and Tondeur interac-
tion (dashed line). Black diamonds denote the data taken from
ref. [5]. The solid lines, on the right-hand side of (a), corre-
spond to Ska, SkM, SkM*, RATP, and SIII from top to bot-
tom. In (b), the solid lines, from top to bottom, correspond to
SIII, SkM, SkM*, RATP, and Ska, where SkM and SkM* are
identical.

5 Comparison with microscopic calculations

In order to provide additional elements about the confi-
dence on the effective interactions discussed above, it is
interesting to make a comparison with some microscopic
calculations which are based on a more fundamental level
of theories as well as on very different physical input. In
fig. 7 the present predictions for the pure neutron matter
EOS are compared with the theoretical estimates of Fried-
man and Pandharipande [5], obtained from a variational
framework based on the Urbana v14 two-nucleon poten-
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Fig. 8. Symmetric nuclear matter EOS e(ρ, 0), calculated by
(a) original parameters and (b) readjusted parameters of the
various Skyrme interactions (solid lines), Myers-Swiatecki in-
teraction (dot-dashed line), and Tondeur interaction (dashed
line). The full dots stand for the results taken from ref. [6], the
crosses denote the results taken from ref. [8]. The solid lines,
on the right-hand side of (a), correspond to SIII, Ska, RATP,
SkM, and SkM*, from top to bottom, where SkM and SkM*
are identical. In (b), the solid lines, from top to bottom, cor-
respond to SkM, SkM*, RATP, Ska, and SIII, where SkM and
SkM* are identical. The Tondeur’s is very close to the Ska’s.

tial plus three-nucleon interaction model of Lagaris and
Pandharipande [20]. The neutron matter EOS e(ρ, 1) vs.
nucleon density ρ is calculated by (a) original parameters
and (b) readjusted parameters of the various Skyrme in-
teractions (solid lines), Myers-Swiatecki interaction (dot-
dashed line), and Tondeur interaction (dashed line). Black
diamonds denote the data taken from ref. [5]. The solid
lines, on the right-hand side of (a), correspond to Ska,
SkM, SkM*, RATP, and SIII from top to bottom. In (b),
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Fig. 9. Neutron matter EOS e(ρ, 1), calculated by (a) origi-
nal parameters and (b) readjusted parameters of the various
Skyrme interactions (solid lines), Myers-Swiatecki interaction
(dot-dashed line), and Tondeur interaction (dashed line). The
full dots stand for the results taken from ref. [6], the crosses
denote the results taken from ref. [8]. The solid lines, on the
right-hand side of (a), correspond to Ska, RATP, SkM, SkM*,
and SIII, from top to bottom. In (b), the solid lines, from top
to bottom, correspond to SIII, SkM, SkM*, RATP, and Ska,
where SkM and SkM* are identical.

the solid lines, from top to bottom, correspond to SIII,
SkM, SkM*, RATP, and Ska, where SkM and SkM* are
identical. It seems that in the low density region the neu-
tron matter EOS’s calculated by original parameters are
closer to microscopic results than those by readjusted pa-
rameters. However, the situation is different if the density
is extended to higher region (see fig. 9).

It is worthwhile to note that the generalized Skyrme
interaction FPS21 proposed by Pethick, Ravenhall and
Lorenz [7] has the property that it is a good fit to both the
nuclear and neutron matter calculations of Friedman and
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Pandharipande. In this sense, fig. 7 may be regarded also
as a comparison between our results and those of FPS21.

Even the EOS’s based on effective interactions and
energy functional theories discussed in the present work
are essentially nonrelativistic, it is still interesting to see
how they behave in the high density region. Figure 8
gives the symmetric nuclear matter EOS’s e(ρ, 0) up to
about 10ρ0, calculated by (a) original parameters and
(b) readjusted parameters of the various Skyrme inter-
actions (solid lines), Myers-Swiatecki interaction (dot-
dashed line), and Tondeur interaction (dashed line). The
full dots stand for the results taken from ref. [6], which is a
microscopic calculation of EOS for dense nuclear and neu-
tron matter based on the Argonne v14 two-nucleon poten-
tial plus Urbana VII three-nucleon potential. The crosses
denote the results taken from ref. [8], which studied the
properties of dense nucleon matter and the structure of
neutron stars, using variational chain summation meth-
ods and the new Argonne v18 two-nucleon interaction and
the Urbana model IX of three-nucleon interaction as well
as the relativistic boost correction to the two-nucleon in-
teraction. The solid lines, on the right-hand side of (a),
correspond to SIII, Ska, RATP, SkM, and SkM*, from top
to bottom, where SkM and SkM* are identical. In (b), the
solid lines, from top to bottom, correspond to SkM, SkM*,
RATP, Ska, and SIII, where SkM and SkM* are identical.
Tondeur’s interaction is very close to the Ska’s.

Figure 9 is the same as fig. 8 but for pure neutron
matter EOS e(ρ, 1). The solid lines, on the right-hand side
of (a), correspond to Ska, RATP, SkM, SkM*, and SIII,
from top to bottom. In (b), the solid lines, from top to
bottom, correspond to SIII, SkM, SkM*, RATP, and Ska,
where SkM and SkM* are identical.

6 Discussion and Summary

A discussion of the nuclear matter EOS’s based on
Skyrme, Myers-Swiatecki and Tondeur interactions is
given in this paper. The equations are in the form of poly-
nomials in the cubic root of density, with coefficients that
are functions of the relative neutron excess and depend on
the model of interaction.

Most of the discussion about the nuclear EOS, up to
now, focus at states around standard state, i.e. about
the quantities a1, J , L, K0, and Ks; especially K0 in
supernova explosion and neutron star calculations and
Ks in heavy-ion collisions. However, even these quantities
or equivalently the interaction parameters were well
determined by the measured data of nuclei, mainly the
nuclear masses, the extrapolation to states far away from
standard state is still an open problem. It is seen that the
difference among these EOSs is not significant in most
of the relative neutron excess range which is of interest
for both heavy-ion collisions and supernova explosion
calculations. However, if the equations are fitted to the
same standard state, the equation based on Tondeur
interaction is softer than others provided the relative
neutron excess is not close to 0 [16].

The numerical result given in section 4 shows that
the asymmetry dependence of the critical point depends
on the model used in the extrapolation. When the EOS
is fitted to same standard state, Skyrme’s and Myers-
Swiatecki’s δc are close each other, especially δc does not
depend sensitively on the choice of γ in Skyrme interac-
tion. On the other hand, Tondeur’s δc is much smaller than
others. This is because the value of Tondeur’s δc depends
sensitively on the interaction parameters, as it can be seen
and checked numerically from the first equation of (59).
In this content, in order to make a choice among these
interactions for the extrapolation, experiments which can
provide direct or even indirect information about nuclear
matter with large asymmetry δ and low density ρ are re-
quired.
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Appendix A.

It will be shown here that the energy density functional
EGD of Myers-Swiatecki interaction can be written approx-
imately in the form of eq. (3). In the Thomas-Fermi model
of nuclei and up to the second order of the localized ap-
proximation given in ref. [10], we have

EMS
GD = aI1(r/a)F (1)(r) +

a2

2
I2(r/a)F (2)(r), (A.1)

where a is the Yukawa range of force,

I1(x) =
2
x
(1 − e−x), I2(x) = 2(1 + 2e−x), (A.2)

F (1)(r) = T
[
ε1n

dρn

dr
+ ε1p

dρp

dr

]
, (A.3)

F (2)(r) = T
[
ε1n

d2ρn

dr2
+ ε1p

d2ρp

dr2

+
2ε2n
ρ0

(dρn

dr

)2

+
2ε2p
ρ0

(dρp

dr

)2]
. (A.4)

In the above two equations, ε1n, ε1p, ε2n and ε2p are the
functionals of nucleon densities ρn(r) and ρp(r) whose spe-
cific expressions are given in ref. [10]. Using the approxi-
mation of I1(x) ≈ 2/x and I2(x) ≈ 2 which are explained
and employed in ref. [10], the following result can be ob-
tained:

EMS
GD = a2T

(
ε1n∇2ρn + ε1p∇2ρp

)
. (A.5)

In the simplified Myers-Swiatecki interaction, we have [10]

ε1n = −
[
αl

ρn

ρ0
+ αu

ρp

ρ0

]
,

ε1p = −
[
αl

ρp

ρ0
+ αu

ρn

ρ0

]
, ε2n = ε2p = 0, (A.6)
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where αl,u = 1
2 (1 ± ξ)α, thus the functional EMS

GD can be
reduced to

EMS
GD =

a2T

ρ0

{
αu(∇ρ)2 + (αl − αu)[(∇ρn)2 + (∇ρp)2]

}
.

(A.7)

For the symmetric case with ρn = ρp = ρ/2, we have
finally

EMS
GD =

a2T

2ρ0
α(∇ρ)2. (A.8)

Appendix B.

The formulas to calculate the interaction parameters from
the nuclear matter quantities a1, K0, J , L, and Ks will
be given here for Skyrme, Myers-Swiatecki, and Tondeur
interactions, respectively. In Skyrme interaction, s1, s2,
t3, and x3 can be calculated by the following equations:

s1 +
1
2
s2 =

( 2
3π2

)2/3 5
6(γ − 5)

×
[3(γ − 2)

5
+

3γa1 − K0

T

] T

ρ
5/3
0

, (B.1)

s1 + 2s2 =
( 2
3π2

)2/3 3
2(γ − 5)

×
[γ − 2

3
− γ(3J − L) + Ks

T

] T

ρ
5/3
0

, (B.2)

t3 =
16

(γ − 5)(γ − 3)

[K0 − 15a1

T
− 9

5

] T

ρ
γ/3
0

, (B.3)

x3 =
3
2

T − 5(3J − L) − Ks

K0 − 15a1 − 9
5T

− 1
2
. (B.4)

Having s1, s2, and t3, t0 can be calculated by (30). Finally,
x0 can be calculated by

t0(x0+
1
2
) =

2
γ−3

[
γ−2 − 5γJ−(γ+2)L+Ks

T

] T

ρ0
. (B.5)

Myers-Swiatecki interaction parameters can be calcu-
lated as

α =
K0 − 10a1

T
, (B.6)

B =
5
18

K0 − 6a1

T
, (B.7)

γ = 1− 5
9

K0 − 15a1

T
, (B.8)

ξ = − 4B(1 + γ)
α(4B + γ)

[
1 − 5B − γ

B(1 + γ)
J

T
+

2B − γ

2B(1 + γ)
L

T

]
,

(B.9)

ζ =
1
3
− 2(1 + γ)

3(4B + γ)

[
1− 3

1 + γ

3J − L

T

]
. (B.10)

Tondeur interaction parameters are

a = −3
5

γ − 2
γ − 3

(
1 +

5
3

γ

γ − 2
a1

T

) T

ρ0
, (B.11)

b =
3

γ − 3
1

ρ
γ/3
0

(
a1 +

T

5

)
, (B.12)

c =
J

ρ
2/3
0

. (B.13)
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